Mathematik bleibt für viele Schüler ein Buch mit sieben Siegeln. Das muss nicht sein: In sieben spannenden Kurzfilmen werden mit dieser DVD Informationen über Fraktale, die Zahl Pi, das Pascalsche Dreieck, die Topologie, Spiralen und das Rechnen mit dem Unendlichen auf verständliche Weise erklärt.
Bernoulli-Prozesse sind Zufallsversuche mit zwei möglichen Ausgängen. Der Film erläutert, wie man anhand des Galton-Bretts, des Baumdiagramms und des Pascalschen Dreiecks samt zugehöriger Rechenregeln die Wahrscheinlichkeit errechnen kann, dass man bei einer n-stufigen Bernoulli-Kette k Treffer erzielt.
Für die Multiplikation und die Division negativer Zahlen gibt es einige einfache Regeln, die der Film vorstellt: Man rechnet mit den Beträgen der Zahlen. Hat einer der Faktoren ein negatives Vorzeichen, ist das Ergebnis negativ, sind die Vorzeichen bei beiden Faktoren gleich, ist das Ergebnis positiv.
Die geografische Ortsbestimmung ist ein Beispiel für angewandte Mathematik. Der Film behandelt die Geometrie von Kreis und Kugel sowie den Meridian, die Breiten- und die Längengrade. Die Grundzüge der Navigation werden betrachtet und das metrische System sowie Grad, Minute und Sekunde erklärt.
Drei Kinder erzählen mit Bildern von ihrer Flucht: Butterfly ist sechs Jahre alt und stammt aus dem Iran. Sie kam mit ihrer Mutter. Camel aus Afghanistan brach mit 13 Jahren auf nach Deutschland und sollte vier Jahre brauchen. Die Waise 50 Cent kommt aus Afrika und erzählt vom neuen Leben in der Fremde.
Es gibt mehrere unterschiedliche Methoden, mit denen man statistische Daten beschreiben kann. Der Film stellt das arithmetische Mittel, den Median und die Quartile vor. Er erklärt anhand von Beispielen, welche Methode wann angewendet werden sollte, und erläutert die grafische Darstellung im Boxplot.
Wie kann man lineare Gleichungen grafisch darstellen? Das Verfahren ist ganz einfach: Es wird gezeigt, wie man Wertepaare aus einer Tabelle in das Koordinatensystem überträgt. Die Funktionsvorschrift der linearen Funktion wird erläutert, und anhand von Beispielen werden unterschiedliche Graphen gezeichnet.
Der Film zeigt die Entwicklung einer Jugendclique, deren "Zuhause" eine ehemalige Hochofenanlage ist. Dort feiern sie Partys, dort entlädt sich ihre Gewalt aus Hass, Wut und Verzweiflung über die aussichtslose Lage. Manche landen im Knast, während andere die Kräfte der Selbstheilung und Selbsterkenntnis entdecken.
Vierzehn Menschen, Kinder wie Erwachsene, erzählen von ihrer Flucht vor Hunger, Giftgas, Krieg und Folter. Sie hoffen auf eine Zukunft fern der Heimat. Doch in Pinneberg leben sie in Containerunterkünften und kämpfen einen anderen Krieg - den mit den Behörden nämlich, der sie langsam, aber sicher zermürbt.
Alle geometrischen Figuren mit Ecken sind Vielecke, auch Polygone genannt. Der Film beschäftigt sich mit regelmäßigen Polygonen. Zunächst werden gleichseitige Dreiecke und Quadrate kurz betrachtet, dann wird gezeigt, wodurch man bei beliebigen Vielecken den Flächeninhalt und den Umfang ermitteln kann.
Damit eine Stichprobe für eine Hochrechnung oder eine Prognose auch repräsentativ ist, muss sie zufällig gewählt sein. Der Film gibt Beispiele aus dem Alltag und zeigt, dass es auch bei der Zufallsauswertung Fehler gibt. Entsprechend sind Prognosen auch nie wirklich gesichert, sondern nur wahrscheinlich.
Zinsen, die dem Konto gutgeschrieben werden, erhöhen das Kapital. Sie werden im nächsten Jahr mit verzinst. Das ist der Zinseszins. Er hat über Jahre hinweg einen starken Einfluss auf die Endsumme. Der Film zeigt, mit welcher Formel man verzinstes und Anfangskapital, Zinssatz und Laufzeit berechnet.
Die Exponentialfunktion wird im Alltag genutzt, um exponentielle Entwicklungen darzustellen. Der Film beschreibt ihre grundlegende Formel mit der positiven Basis, die weder 0 noch 1 betragen darf, erklärt einige weitere Eigenschaften der Funktion und demonstriert eine alternative Art der Wertberechnung.
Die Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten sind Thema dieses Films. Er zeigt, dass der jeweilige Graph eine Parabel und keine Gerade ist, und erklärt ihre von geraden und ungeraden Zahlen abhängende Symmetrie im Koordinatensystem ebenso wie die unterschiedlichen Arten des Wachstums.
Der Film zeigt, wie aus einer Potenzfunktion mit ganzzahligen Exponenten eine Quadratfunktion entsteht und was ihre Eigenarten sind. Die Rechnung mit gebrochenen Exponenten wird demonstriert und erläutert, dass die Rechenregeln für rationale Exponenten auch für Exponenten aus reellen Zahlen gelten.
Eine Randbemerkung in einem Buch, hingekritzelt vom französischen Mathematiker Fermat in der ersten Hälfte des 17. Jahrhunderts, hält über Jahrhunderte hinweg seine Fachkollegen in Atem: Niemand schafft es, den Satz zu beweisen - bis 1993 der Mathematiker Andrew Wiles eine aufsehenerregende Vorlesung hält.
Wie bearbeitet man lineare Funktionen? Dieser eingängige Rap erläutert das Ablesen von Nullstellen aus der Gleichung, den Anstieg der linearen Funktion, welchen Einfluss einzelne Parameter haben, wo die Schnittpunkte mit den Achsen liegen und wie man die Funktion mit nur zwei gegebenen Punkten findet.
Der Film erklärt die Zusammenhänge der einzelnen Elemente einer Potenz und die Beziehungen zwischen Potenzen, Wurzeln und Logarithmen. Er demonstriert, wie man aus Basis und Exponent den Wert errechnet, aus dem Wert und dem Exponenten die Basis und schließlich aus der Basis und dem Wert den Exponenten.
Eine Formel für eine Zahl wie Pi mit unendlich vielen Nachkommastellen zu finden, ist ziemlich kompliziert. Dieses Video zeigt, wie die Annäherung verhältnismäßig einfach gelingt: Dafür braucht man nur ein Koordinatensystem und einen Viertelkreis, den Satz des Pythagoras und eine Funktionsgleichung.
Für Pi sind inzwischen mehrere Milliarden Nachkommastellen nachgewiesen worden. Da liegt es doch auf der Hand, dass alle Zahlenfolgen darin enthalten sein müssen, oder? Fast - dabei handelt es sich nur um ein Bauchgefühl, einen Beweis dafür gibt es nicht. Das Video gibt den Stand der Forschung wieder.
Die Wurzel aus 2 ist irrational; der klassische Beweis dazu stammt vom Euklid. Allerdings gibt es auch einen einfacheren Weg, dies zu zeigen: Man beginnt mit der Annahme, dass die Wurzel aus 2 nicht irrational ist, und führt diese in der Rechnung zu einem Widerspruch. Wie das funktioniert, zeigt das Video.
Eine Zahl mit unendlich vielen Nachkommastellen kann man nie wirklich genau berechnen, allerdings gibt es eine ganze Anzahl von Algorithmen, mit denen das näherungsweise sehr gut möglich ist. In diesem Video werden einige linear und auch quadratisch konvergente Algorithmen vorgestellt, die sich gut eignen.
Eine lange Mathematikaufgabe bedeutet nicht zwingend, dass auch die Lösung lang sein muss: In diesem Video wird die längste Aufgabe der internationalen Mathematik-Olympiade von 2018 vorgestellt und dann ein nachvollziehbarer, schneller und funktionierender Lösungsweg Schritt für Schritt erklärt.
Der Logarithmus als Rechenhilfe wurde 1614 vom schottischen Mathematiker Napier erfunden und von seinem Kollegen Briggs weiterentwickelt. Dieser Film zeigt, inwieweit der Logarithmus das Rechnen vereinfacht, nennt die zugehörigen Rechenregeln und erklärt, wo uns im Alltag logarithmische Skalen begegnen.
Die Wurzel aus 2 ist irrational, das heißt, sie hat unendlich viele Nachkommastellen. Ihr Kehrwert beträgt immer die Hälfte der Wurzel aus 2. Während sich nicht einfach mit ihr rechnen lässt, tritt sie aber im Alltag auf: Das Seitenverhältnis bei einem Blatt der DIN-Norm beträgt immer 1 zu Wurzel aus 2.
Wirkt auf jeder Seite eines Hebels in einem gewissen Abstand eine Kraft, kann man mithilfe des Hebelgesetzes herausfinden, unter welchen Bedingungen der Hebel genau im Gleichgewicht ist. Dieses Video verpackt die Formel für das Hebelgesetz in einem Ohrwurm, sodass es leichtfällt, es sich zu merken.