Der Satz des Pythagoras besagt, dass die Summe der Flächen der Quadrate über den Katheten der der Fläche des Quadrats über der Hypotenuse entspricht: a2+b2+c2. Der Ohrwurm liefert den geometrischen Beweis mit der ersten binomischen Formel und formuliert auch die Umkehrung auf einprägsame Art und Weise.
Die Division mit 7 ist leicht, wenn man sich die Zahlenkombination 142857 merkt: Dies sind die Nachkommastellen der Division, die - je nach Ausgangszahl - an verschiedenen Stellen beginnen und sich immer periodisch wiederholen. Dank des Ohrwurmcharakters des Songs vergisst man die Information nicht mehr.
Wie hängen die Möndchen des Hippokrates mit dem Satz des Pythagoras zusammen, und was hat das alles mit dem Satz des Thales zu tun? Dieser eingängige Song bietet einen guten Überblick über die Zusammenhänge der Formeln und zeigt, wie man mit ihnen auf einfache Weise Flächeninhalte berechnen kann.
Wie berechnet man das Volumen einer Kugel und wie ihren Oberflächeninhalt? Dieser Song nennt in Rap-Form die passenden Formeln, leitet sie her und führt den Beweis. Unter anderen findet dabei das Prinzip von Cavalieri Anwendung. Dank des eingängigen Raps behalten die SchülerInnen die Informationen besser.
Wie viel Fläche hat eigentlich eine Pizza? Um das herauszufinden, muss man die Formel für die Berechnung der Fläche eines Kreises benutzen, die hier in einem Rap genannt und hergeleitet wird. Die Zuhörer können nicht nur die Formel gut behalten, sondern erinnern sich auch der visuellen Veranschaulichung.
Die Zahlen zwischen 11 und 19 lassen sich mit einem einfachen Trick leicht im Kopf miteinander multiplizieren. Wie das funktioniert, erklärt dieser Song. Teil des Textes sind auch der Beweis der Regel und ihre Herleitung. Da das Lied wie üblich Ohrwurm-Qualität hat, bleiben die Informationen auch hängen.
Ein Matherätsel wird in Songform erklärt: Wie lässt sich mit nur dreimaligem Wiegen eine von 13 Kugeln finden, die ein anderes Gewicht hat als die anderen zwölf, wenn dafür lediglich eine Balkenwaage zur Verfügung steht? Der Song stellt das Rätsel vor und erläutert die Lösung in gewohnter Ohrwurm-Qualität.
Es gibt verschiedene Regeln, die den Umgang mit quadratischen Funktionen erleichtern. In diesem Song wird mit eingängiger Melodie erklärt, wie man die Nullstelle findet, warum es mal eine, mal zwei und mal gar keine Nullstelle gibt und was man tun kann, um möglichst rasch die Extremstelle zu identifizieren.
Nicht immer bietet die normale Schulmethode den schnellsten Berechnungsweg: Dieser Film erklärt, wie man mit geschicktem Addieren und Multiplizieren zweier Brüche rascher ans Ziel kommt. Dafür werden die Regeln der indischen "vedischen Mathematik" in einem Song erklärt, an dem man sich gut erinnern kann.
Auch in diesem Video wird die a-b-c-Formel (also die Mitternachtsformel) erklärt. Sie erlaubt das Lösen von quadratischen Gleichungen. Der Song erläutert außerdem die Herleitung sowie den Beweis der Formel - mit gewohntem Ohrwurm-Potenzial zum leichteren Erinnern, dieses Mal aber in englischer Sprache.
Beim Multiplizieren und Dividieren von Potenzen greifen Potenzgesetze, wenn ein gleicher Exponent oder eine gleiche Basis vorliegt. Dieser Ohrwurm erklärt, wie das funktioniert, und beschreibt die Vorgehensweise bei negativen Exponenten sowie den Grund, weshalb die Wurzel gleich ½ im Exponenten ist.
Wer sich fragt, wofür er Mathematik im wirklichen Leben brauchen soll, bekommt hier einige Beispiele genannt: Wer in den Urlaub fahren möchte, sollte die Strecken und die Zeit, die er dafür braucht, ebenso berechnen können wie den Wert der Landeswährung in Euro. Mit Ohrwurm-Qualität gegen das Vergessen!
Wie sollte man in einem Spiel vorgehen, wenn man mit unterschiedlich hohen Punktzahlen zu verschieden starken Attacken befähigt wird? Dieses Video erklärt auf verständliche Weise, wie sich die Wahrscheinlichkeitsrechnung in einer Alltagssituation anwenden lässt - und dabei die Gewinnchancen erhöht.
Auch wenn der Satz im Alltag nicht häufig Anwendung findet, wird hier in Liedform erklärt, dass die Wurzel aus 2 irrational ist. Es wird der ein Widerspruchsbeweis geführt und gezeigt, dass es keine Möglichkeit gibt, die Wurzel aus 2 in einem Bruch zu schreiben - was der Fall wäre, wäre sie rational.
Die meisten Nachkommastellen bei der Division mit Zahlen bis 9 sind relativ leicht zu merken, nur die der Division mit sieben fallen etwas aus dem Rahmen. Dieses Video zeigt die Muster auf, die sich darin verbergen, und bietet gute Eselsbrücken, mit denen man sich die Nachkommastellen leicht merken kann.
Wie bearbeitet man lineare Funktionen? Dieser eingängige Rap erläutert das Ablesen von Nullstellen aus der Gleichung, den Anstieg der linearen Funktion, welchen Einfluss einzelne Parameter haben, wo die Schnittpunkte mit den Achsen liegen und wie man die Funktion mit nur zwei gegebenen Punkten findet.
Es ist gut belegt, dass Pi irrational ist. Wie sehr allerdings, war auch in der jüngsten Geschichte noch Forschungsgegenstand. Das Video erklärt mit Animationen, wie man die Irrationalität einer reellen Zahl dadurch beschreiben kann, wie gut sie sich durch rationale Zahlen mit kleinem Nenner annähern lässt.
Die Teilbarkeitsregeln für 7 lassen sich etwas weniger leicht herleiten als die für andere Zahlen. Aber es gibt sie: Im Video werden mehrere von ihnen zunächst anhand von Beispielen vorgestellt und dann gezeigt, wie diese Verfahren sich in Formeln umwandeln lassen und daher ganz regelmäßig funktionieren.
Quadratische Gleichungen lassen sich unter gewissen Umständen einfach im Kopf lösen: Vor allem, wenn ganze Zahlen die Lösungen sind, lässt sich der Satz von Vieta relativ leicht anwenden. Wie dieser lautet und wie man ihn anwendet, wird in diesem Video an mehreren konkreten Beispielen demonstriert.
Vertiefend zum vorangegangenen Erklärvideo "Schriftliches Wurzelziehen" werden hier zusätzliche Erläuterungen zu den einzelnen Schritten der Beispielrechnung gegeben: Unter anderem wird gezeigt, wie man die ungefähre Einordnung der einzelnen Schritte mithilfe der binomischen Formel vornehmen kann.
Die Auswirkungen von a und c sind in quadratischen Funktionen leicht zu erkennen: a streckt, staucht oder spiegelt den Graphen, c verschiebt ihn. Mit denen des b sieht es anders aus. Dieser Film erklärt, welche Verschiebungen b veranlasst und dass der Funktionswert an der Stelle 0 nicht geändert wird.
Die Mathematik-Software LaTeX kennt von Haus aus zunächst keine Umlaute. Es gibt aber gleich mehrere Möglichkeiten, wie man sie dem Programm "beibringen" kann. Im Video werden die Optionen vorgestellt und erklärt, dass es am verwendeten Editor liegen kann, wenn dennoch Fehlermeldungen angezeigt werden.
Anhand eines Ziegels mit Normalformat wird in diesem Video erklärt, was ein Euler-Ziegel ist: Er zeichnet sich dadurch aus, dass alle seine Kantenlängen und seine Seitendiagonalen ganzzahlig sind. Bislang ist unbewiesen, ob es den perfekten Euler-Ziegel gibt, in dem auch die Raumdiagonalen ganzzahlig sind.
Um den Sinus-Wert eines Winkels zu bestimmen, braucht man ein rechtwinkliges Dreieck mit bekannten Winkeln und Seitenlängen. Der Sinus ist das Verhältnis von Gegenkathete zu Hypotenuse. Es wird gezeigt, dass es relativ einfach ist, sich die Sinuswerte der Winkel mit 30 °, 45 °, 60° und 90° zu merken.
Man spricht von der a-b-c-Formel, weil man mit ihr Gleichungen vom Typ ax2+bx+c=0 löst - und von der Mitternachtsformel spricht man, weil die Schüler sie am besten auch mitten in der Nacht wiedergeben können sollten. Die Formel wird hier in einen eingängigen Rap verpackt, der das Erinnern erleichtert.
Dieses Video erklärt die p-q-Formel, mit der sich mathematische Gleichungen lösen lassen, in einem eingängigen Rap. Die Schüler erinnern sich so leichter daran, wie man die Formel herleitet und anwendet. Außerdem wird erklärt, welche Alternative es gibt und welcher Trick die Rechnung stark vereinfacht.
Bei YouTube versteckt sich das sogenannte Fibonacci-Easter-Egg. Es wird erklärt, wer Fibonacci war und was es mit der Fibonacci-Zahlenfolge auf sich hat. Der Zusammenhang mit dem Goldenen Schnitt wird erläutert und es wird demonstriert, wie man die Zahlenfolge durch Multiplikation erstellen kann.
Was 0 hoch 0 ist, ist nicht genau definiert. Taschenrechner geben je nach Modell 1, Error oder nicht definiert an. In diesem Film wird gezeigt, welche Möglichkeiten es gibt, weshalb sie alle nicht immer stimmen können und warum es manchmal einfacher oder praktischer ist, einen bestimmten Wert anzunehmen.
In der Fußballweltmeisterschaft spielen in der Gruppenphase acht Gruppen jeweils sechs Partien, in der K.o.-Runde folgen weitere 16 Spiele. Diese alle korrekt vorherzusagen, ist immens unwahrscheinlich. Für ein einzelnes Land gibt es aber nur 432 Möglichkeiten - das kann ein Haustier theoretisch schaffen.