Für die Multiplikation und die Division negativer Zahlen gibt es einige einfache Regeln, die der Film vorstellt: Man rechnet mit den Beträgen der Zahlen. Hat einer der Faktoren ein negatives Vorzeichen, ist das Ergebnis negativ, sind die Vorzeichen bei beiden Faktoren gleich, ist das Ergebnis positiv.
Bernoulli-Prozesse sind Zufallsversuche mit zwei möglichen Ausgängen. Der Film erläutert, wie man anhand des Galton-Bretts, des Baumdiagramms und des Pascalschen Dreiecks samt zugehöriger Rechenregeln die Wahrscheinlichkeit errechnen kann, dass man bei einer n-stufigen Bernoulli-Kette k Treffer erzielt.
Mathematik bleibt für viele Schüler ein Buch mit sieben Siegeln. Das muss nicht sein: In sieben spannenden Kurzfilmen werden mit dieser DVD Informationen über Fraktale, die Zahl Pi, das Pascalsche Dreieck, die Topologie, Spiralen und das Rechnen mit dem Unendlichen auf verständliche Weise erklärt.
Damit eine Stichprobe für eine Hochrechnung oder eine Prognose auch repräsentativ ist, muss sie zufällig gewählt sein. Der Film gibt Beispiele aus dem Alltag und zeigt, dass es auch bei der Zufallsauswertung Fehler gibt. Entsprechend sind Prognosen auch nie wirklich gesichert, sondern nur wahrscheinlich.
Alle geometrischen Figuren mit Ecken sind Vielecke, auch Polygone genannt. Der Film beschäftigt sich mit regelmäßigen Polygonen. Zunächst werden gleichseitige Dreiecke und Quadrate kurz betrachtet, dann wird gezeigt, wodurch man bei beliebigen Vielecken den Flächeninhalt und den Umfang ermitteln kann.
Es gibt mehrere unterschiedliche Methoden, mit denen man statistische Daten beschreiben kann. Der Film stellt das arithmetische Mittel, den Median und die Quartile vor. Er erklärt anhand von Beispielen, welche Methode wann angewendet werden sollte, und erläutert die grafische Darstellung im Boxplot.
Die geografische Ortsbestimmung ist ein Beispiel für angewandte Mathematik. Der Film behandelt die Geometrie von Kreis und Kugel sowie den Meridian, die Breiten- und die Längengrade. Die Grundzüge der Navigation werden betrachtet und das metrische System sowie Grad, Minute und Sekunde erklärt.
Wie kann man lineare Gleichungen grafisch darstellen? Das Verfahren ist ganz einfach: Es wird gezeigt, wie man Wertepaare aus einer Tabelle in das Koordinatensystem überträgt. Die Funktionsvorschrift der linearen Funktion wird erläutert, und anhand von Beispielen werden unterschiedliche Graphen gezeichnet.
Die IBAN besteht aus der Länderkennung, einer zweistelligen Prüfzahl, der Bankleitzahl und der Kontonummer. In diesem Film wird gezeigt, wie genau man aus den anderen drei Angaben die Prüfzahl errechnen kann - bei Bedarf kann man so ausrechnen, ob man bei der Niederschrift einen Fehler gemacht hat.
Was 0 hoch 0 ist, ist nicht genau definiert. Taschenrechner geben je nach Modell 1, Error oder nicht definiert an. In diesem Film wird gezeigt, welche Möglichkeiten es gibt, weshalb sie alle nicht immer stimmen können und warum es manchmal einfacher oder praktischer ist, einen bestimmten Wert anzunehmen.
Die Wurzel aus 2 ist irrational; der klassische Beweis dazu stammt vom Euklid. Allerdings gibt es auch einen einfacheren Weg, dies zu zeigen: Man beginnt mit der Annahme, dass die Wurzel aus 2 nicht irrational ist, und führt diese in der Rechnung zu einem Widerspruch. Wie das funktioniert, zeigt das Video.
Für Pi sind inzwischen mehrere Milliarden Nachkommastellen nachgewiesen worden. Da liegt es doch auf der Hand, dass alle Zahlenfolgen darin enthalten sein müssen, oder? Fast - dabei handelt es sich nur um ein Bauchgefühl, einen Beweis dafür gibt es nicht. Das Video gibt den Stand der Forschung wieder.
Eine Zahl mit unendlich vielen Nachkommastellen kann man nie wirklich genau berechnen, allerdings gibt es eine ganze Anzahl von Algorithmen, mit denen das näherungsweise sehr gut möglich ist. In diesem Video werden einige linear und auch quadratisch konvergente Algorithmen vorgestellt, die sich gut eignen.
Die Mathematik-Software LaTeX bietet viele Möglichkeiten, um das Dokument zu strukturieren: Im Video wird gezeigt, wie Absätze, Kapitel und Unterkapitel entstehen. Man kann Inhaltsverzeichnis und Titel erstellen lassen. Nachträgliche Änderungen im Dokument werden im Verzeichnis automatisch umgesetzt.
Eine Formel für eine Zahl wie Pi mit unendlich vielen Nachkommastellen zu finden, ist ziemlich kompliziert. Dieses Video zeigt, wie die Annäherung verhältnismäßig einfach gelingt: Dafür braucht man nur ein Koordinatensystem und einen Viertelkreis, den Satz des Pythagoras und eine Funktionsgleichung.
Bei YouTube versteckt sich das sogenannte Fibonacci-Easter-Egg. Es wird erklärt, wer Fibonacci war und was es mit der Fibonacci-Zahlenfolge auf sich hat. Der Zusammenhang mit dem Goldenen Schnitt wird erläutert und es wird demonstriert, wie man die Zahlenfolge durch Multiplikation erstellen kann.
In der Fußballweltmeisterschaft spielen in der Gruppenphase acht Gruppen jeweils sechs Partien, in der K.o.-Runde folgen weitere 16 Spiele. Diese alle korrekt vorherzusagen, ist immens unwahrscheinlich. Für ein einzelnes Land gibt es aber nur 432 Möglichkeiten - das kann ein Haustier theoretisch schaffen.
Beim Würfeln mit sechs verschiedenen Würfeln kann es zu sechs hoch sechs unterschiedlichen Kombinationen kommen - eine ganze Menge. Welche Kombinationen besonders häufig sind, wird in diesem Video beantwortet, und es wird gezeigt, mit welchen Überlegungen und Rechenschritten man diese Frage beantwortet.
Wie genau stellt man eigentlich nach der Bundestagswahl fest, welche Parteien wie viele Sitze im Bundestag bekommen? Mit der Stimmauszählung allein ist es nicht getan. In diesem Video wird gezeigt, welche einzelnen Schritte notwendig sind, um die Sitze inklusive Überhangmandaten angemessen zu verteilen.
Es gibt nicht einfach eine festgelegte Anzahl von Bundestagssitzen: Bei jeder Bundestagswahl kommen zusätzlich zu den regulären Sitzen noch die Überhangmandate, die Direktmandate und die Ausgleichsmandate hinzu. Was es damit auf sich hat und wie die Wahlkreise festgelegt werden, wird in diesem Video erklärt.
Wie lange es dauert, bis man eine 6 würfelt, hängt vom Glück ab - sie kann beim ersten oder beim tausendsten Wurf fallen. Allerdings kann man mathematisch den Durchschnitt der nötigen Würfe errechnen. Dieses Video zeigt, wie man dabei vorgeht und wie sich die Wahrscheinlichkeit von Wurf zu Wurf verändert.
Die Mannschaften in der Bundesliga sind nicht alle gleich gut. Wäre dem so, würde es trotzdem Gewinner und Verlierer geben. In diesem Video wird errechnet, wie die Verteilung der Punktzahlen bei gleich guten Teams aussehen könnte und wie groß der Vorsprung des Erstplatzierten im Schnitt sein würde.
Bei der Championsleague-Achtelfinalauslosung gibt es Einschränkungen: Es sollen keine Teams gegeneinander spielen, die bereits in einer Gruppe waren oder die aus einem Land kommen. Es soll immer ein Erster gegen einen Zweiten spielen. Das ergibt spannende Voraussetzungen für die Wahrscheinlichkeitsrechnung.
Eine lange Mathematikaufgabe bedeutet nicht zwingend, dass auch die Lösung lang sein muss: In diesem Video wird die längste Aufgabe der internationalen Mathematik-Olympiade von 2018 vorgestellt und dann ein nachvollziehbarer, schneller und funktionierender Lösungsweg Schritt für Schritt erklärt.
Wenn man bestimmte Befehlsketten bei der Arbeit mit LaTeX immer wieder benutzt, kann man der Einfachheit halber dafür selbst Befehle definieren, damit die Arbeit schneller von der Hand geht. Diese können auch eigene Parameter enthalten. Im Video wird das anhand eines einfachen Beispiels demonstriert.
Der Logarithmus als Rechenhilfe wurde 1614 vom schottischen Mathematiker Napier erfunden und von seinem Kollegen Briggs weiterentwickelt. Dieser Film zeigt, inwieweit der Logarithmus das Rechnen vereinfacht, nennt die zugehörigen Rechenregeln und erklärt, wo uns im Alltag logarithmische Skalen begegnen.
Lara, Tom und Jannis bekommen gleich viel Taschengeld, gehen aber verschieden damit um. Der Film zeigt, was die Vor- und Nachteile davon sind, alles gleich auszugeben, etwas zu sparen und den Rest auszugeben oder alles zu sparen. Die eine objektiv richtige Möglichkeit zum Umgang mit Geld gibt es nicht.
Alle wichtigen Informationen rund ums Dreieck bietet dieser Kurzfilm. Die Punkte, Seiten, Winkel und Höhen werden benannt. Unterschiedliche Formen des Dreiecks und der Winkel werden vorgestellt. Schließlich wird gezeigt, wie man den Umfang und den Flächeninhalt der geometrischen Figur errechnen kann.